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On the Conditional Equivalence of Two Starting 
Methods for the Second Algorithm of Remez 

By R. E. Huddleston 

Abstract. In computing best min-max rational approximations by the second algorithm 
of Remez (which is an iterative procedure), one must provide a starting approximation. 
A method proposed by Ralston and one by Werner are shown to be equivalent under 
reasonable conditions. 

1. Introduction. Ralston [3, p. 286] and Werner, Stoer, and Bommas [4] 
(hereinafter referred to as Werner) have suggested methods for obtaining a starting 
approximation for the Remez algorithm for rational Chebyshev approximation 
which work well in all but the hardest cases. (Both Ralston and Werner have also 
proposed methods for the remaining cases but those results will not be discussed 
here.) Werner's method is much easier to implement than Ralston's and, as we shall 
show here, produces the same starting approximation under very reasonable con- 
ditions. 

2. Werner's Method. Let f E C[a, b] be the function which is to be ap- 
proximated by a rational function of degree m in the numerator and n in the de- 
nominator. Denote the starting approximation by 

p(0) E aj Tj(x) 

(2.1) R n(x) = (0)(X) = 
QnW 

bi Tj(x) 
i=o 

where T,(x) = cos(r arcos x) is the Chebyshev polynomial of degree r. 
Without loss of generality we assume that [a, b] = [- 1, 1] and that bo = 1. To 

determine the m + n + 1 coefficients a,, b, Werner suggests the rational interpolation 

(2.2) Rinn(Z) = A(Zi), i = O. 1, * , m + n +1, 

where the Zi are the zeroes of the Chebyshev polynomial of degree m + n + 1 which 
are given by 

(2.3) Zi = cos((2i + 1)ir/2(m + n + 1)). 

3. Ralston's Method. Obtaining the starting approximation (2.1) by Ralston's 
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method is a two part procedure. First one must determine the coefficients Cj in the 
Chebyshev expansion 

m+2n 

(3.1) f(x) 2 2C0 + E CjT,(x) 
i=I 

where 

2 ff(x) T,(x) 
(3.2) C, = - Iw-jr d i = 0, 1, *., m + 2n. 

Then one must solve the linear system 
n 

ao=2E bjCj, 
= j = 

(3.3) 
n 

a= bj(Cjrjj + Cr+j), r = 1, *.., m + n, 
i =0 

where a, = 0 for r > m. 
If we express f as 

f(x) = '2CO + E CjTj(x) 
j =1 

then we may write 
/n 

f(x) - R?,,n(x) = N(x)/ E bTi(x) 
i so 

where 

N(x) = Co + E CTj(x)]E biTi(x) - E ajTi(x). 2 j i=o i=o 

Requiring that the coefficients of Tj(x) in N(x) vanish for j = 0, 1, *-., m + n 
leads to the linear system (3.3). 

4. Conditional Equivalence. In Ralston's procedure one must evaluate the 
integrals (3.2). The solution of (3.3) requires m + 2n of the Chebyshev coefficients 
CA. This is as opposed to the evaluation of f at only m + n + 1 points in Werner's 
method. Thus, on the surface these two linear systems, (2.2) and (3.3), do not seem 
equivalent. In order to establish a connection between them, we shall use two known 
identities concerning Chebyshev polynomials (see [2, p. 215]): 

m+n 

E Tr(Zi)Tj(Zi) 0, O < r 7]? < m + n, 
i =o 

(4.1) =(m+n+1)/2, 0<r= < m+n, 

=m + n + 1, 0 = r =j, 

where the Zi are given by (2.3), and 

(4.2) Tr+j(x) + Tlrjtl(X) = 2T,(x)Tj(x). 

Let us rewrite the linear system (2.2) for Werner's approximation as 
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m n 

? a T3(Zi) = E bjf(Zj)Tj(Zj). 
j=O _=_ 

Multiplying both sides by Tr(Zi) and summing over i we have 
m m+n n m+n 

E ai E T(Z.)T(Z)) = E bi E f(Z))Tj(Zj)Tr(Z0 ) 
i=O i=O j=O i=O 

Using (4.1) we have 

(m + + o) ,j > ~ 
m [(m+n+1)2 _ r > ?bi (Zi)TiJ(Zi)T(Zi) 

where 6jr is the Kronecker delta function. For r = 0 this yields 
no = zbi(+i~i m+n 

aO= b im + +1 f(Zj)Tj(Zj)To(Zi). i=O 

For 1 ? r < m we have 
n 2 m+n 

a, = b (m + E )Zi)T(z)Tr(Zi) 

and, for r > m, 
n 2 m+n 

O = b m + 2 + f(Z)Tj(Z )Tr(Z) 

If we now employ (4.2) we have 

In 2 m rn 
ao = b + i) 

2 j=O +n = 

and 

1 2 m+n 
ar 2 E b + + 1 E f(Zi)Tr+i(zi) = 

j-o + n +L = 

(4.3) 

+n+1 n 

+(m 
2+ f(Zi)Tir-ii(Zi))) 

for 1 < r < m + n where a,. = 0 for r > m. We note that (4.3) looks a bit more 
like (3.3) now. In fact, they would be equal if the Ck, as defined by (3.2), were equal 
to (2/(m + n + 1)) Em+n f(Zj)Tk(Zj). Using the Gauss-Chebyshev quadrature 
rule (see [3, p. 99]), we have 

21 f(X)Tk(X) 2 n 
Ck 2 A 

2(X)1/(XI)2 dx = + f(Zi)Tk (Zi) + E, 

where 

1 d(2m+2n+2) 

(4.4) E = m22^+n)(2m + 2n)! dX(2m+2n+2) (1(q)Tk(q)). 

Thus, under the condition that the Gauss-Chebyshev quadrature rule with m + 
n + 1 points is used, the two methods of obtaining a starting approximation are 
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equivalent. In practice one would find it rare to be able to exactly evaluate integrals 
such as (3.2)-thus some kind of quadrature rule must be used. Keeping in mind 
that we are trying to derive a starting approximation for an iterative procedure, 
the error given by E seems sufficiently small. 

A FORTRAN implementation of the ALGOL procedure by Werner, Stoer, and 
Bommas [4] and a document [1] describing the implementation is available from the 
author. 
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